1	$\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ or $\overrightarrow{BA} = \mathbf{a} - \mathbf{b}$			M1	Correct diagram (condone missing vector labels or arrows – with C on line segment OA and D on line segment OB) OR for finding \overline{AB} or \overline{BA} - may be seen as part of later working
	$\overline{CD} = \frac{1}{3} (-\mathbf{a} + \mathbf{b}) \text{ or}$ $\overline{DC} = \frac{1}{3} (\mathbf{a} - \mathbf{b}) \text{oe}$			M1	Method to find \overrightarrow{CD} or \overrightarrow{DC}
	$DC = \frac{1}{3}(\mathbf{a} - \mathbf{b})$ oe				
		Correct vectors and conclusion including parallel and trapezium	3	A1	eg \overrightarrow{AB} (AB) and \overrightarrow{CD} (CD) are parallel therefore ABDC is a trapezium
					Total 3 marks

2 (b)	$\overline{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$ $\overline{NE} = \frac{6}{5}\mathbf{a} - \frac{3}{5}\mathbf{b}$ (all oe but simplified) $\overline{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$		3	M1ft	for one of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or one of \overrightarrow{EM} , \overrightarrow{EN} or \overrightarrow{NM} ft (dep on M1 in (a)) their expression for \overrightarrow{ON} for this mark only $[\overrightarrow{ME} = \overrightarrow{ON} + \frac{6}{5}\mathbf{a} - \frac{7}{5}\mathbf{b}$ $\overrightarrow{MN} = \overrightarrow{ON} - \frac{4}{5}\mathbf{b}$, $\overrightarrow{NE} = -\overrightarrow{ON} + \frac{11}{3}\mathbf{a}$]
	$\overline{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$ $\overline{NE} = \frac{6}{5}\mathbf{a} - \frac{3}{5}\mathbf{b}$ (all oe but simplified) $\overline{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$			M1	for two of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or two of \overrightarrow{EM} , \overrightarrow{EN} or \overrightarrow{NM} must be correct
	Evidence of a vector method needed	shown		Al	eg $\overline{ME} = 4 \times \overline{MN}$ or $\overline{ME} = 3 \times \overline{MN}$ or $\overline{ME} = \frac{4}{3} \times \overline{NE}$ or showing they are multiples of the same vector eg $\overline{MN} = \frac{1}{5}(2\mathbf{a} - \mathbf{b})$ and $\overline{NE} = \frac{3}{5}(2\mathbf{a} - \mathbf{b})$